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The Distribution of Clusters for the Ising Model 
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We rigorously prove that  the probabili ty P .  for the origin to belong to a 
cluster of exactly n positive spins in the v-dimensional Ising model behaves 
as exp(-an (v-1~/~) in various regions, including in particular the low- 
temperature positive and negative phases in zero magnetic field. 

KEY WORDS: Ising model; percolation; cluster size distribution; FKG 
inequalities. 

1. INTRODUCTION 

The existence of two different behaviors of the cluster size distribution 
function in the random percolation problem above and below the critical 
concentration has been proved by Kunz and Souillard, (1~ who obtained 
moreover for low and large concentrations the exact behavior of the cluster 
size distribution. They proved also that for interacting percolation problems, 
this distribution cannot decay exponentially in the percolative region, whereas 
it does in the low-concentration region. 

In this paper we shall study the case of  the ferromagnetic v-dimensional 
Ising model and obtain the exact behavior of the duster distribution function 
in various regions of interest. In order to state our results, we first introduce 
some definitions. 

We consider the v-dimensional cubic lattice 77~ (v >/ 2) and boxes 
A ~ Z ~. The Ising model is usually defined by the energy associated with a 
spin configuration cr A in A: 

x~A (x,y) 

where cr x denotes the spin at the site x of the lattice; ~x can take the values 
+ 1/2. The second summation runs over all pairs (x, y )  of  nearest neighbor 
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sites, and /3 denotes the reciprocal temperature (including the constant of 
the interaction). Finally, possible boundary terms would also appear in the 
case of boundary conditions. 

In this paper, it will be useful to work with the variables ~r,~ = ex + �89 
If  ~x = 1, we shall say that the site x is occupied and if ~r, = 0, it will be 
said to be empty. Then, up to an additive constant, the energy of a con- 
figuration ~rA in the box A can be written as 

x E A  < x , y >  

or, if X denotes the set of occupied sites in A, 

O ( X )  = - h i X 1 + [ 3 & ( X )  

where IX[ denotes the number of  sites in the set X and 

x ~ X  
y e A \ X  
< x , y )  

Then the probability of the configuration in A where the sites of X 
are occupied and the sites of A\X are empty is by definition 

/*A(X) = e-  tr(x)/zA, with Za = ~ e-  ~:(Y~ 
y c A  

Finally, the lsing model is obtained by taking the thermodynamic limit of 
the probability measure defined above, that is, A grows to 7/v in a sufficiently 
regular way. 

A cluster C is a maximal connected set of occupied sites (plus spins), 
i.e., a set of occupied sites which are connected through the bonds of the 
lattice and are surrounded by empty sites. We call 0C its boundary, that is, 
the set of empty sites that are nearest neighbor to the sites of C. 

We introduce now the probability P~ for the origin to belong to a 
cluster of exactly n sites, so we can write it as 

= e ( c ,  a c ) =  
OeC OeC 

ICl = n  ICl = n  

where P(C,  ~--C) = P ( C )  is the probability of occurrence of the cluster C, 
that is, the probability that C is occupied and OC empty. We call P~ the 
probability that the origin belongs to an infinite cluster of occupied sites. 

It is known that: 

1. The percolative region, i.e., the region such that P| > 0, includes (m 
the following regions" (a) sufficiently large, positive magnetic field for all 
temperatures; (b) arbitrary, positive field and T < T1 for some temperature 
T1; (c) T < T1 in the positively magnetized pure phase in zero external field. 

2. In the percolative regions, the Pn do not decay exponentially (in 
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contrast with the region with large, negative magnetic field). More precisely, 
it has been proved (1~ that the moments of the cluster distribution function 
satisfy 

{IC1'5 1> K l ! 

I f  P~ ,-, exp( -~n~) ,  then this implies ~ ~< ( ~ -  1)/~; s ~ = ( ~ -  1)Iv is a 
behavior proposed in Ref. 3 on the basis of numerical analysis in the low- 
temperature Ising model. 

In this paper, we prove the following result: 

Theorem.  The cluster size distribution function for plus spins satisfies 

exp[-~'(T, h)n (~-1~1v] <. P .  <. exp[-a(T,  h)n (v-l~/~] 

in the four following regions: 

(1) Large magnetic field, h - 2v/T >~ ho. 
(2) Positive magnetic field and low temperatures, h > 0 and T < To. 
(3) Zero magnetic field and low temperature in the positive phase, 

h = 0 + a n d T <  To. 
(4) Zero magnetic field and low temperature in the negative phase, 

h = O- and T < To. 

We neglect for the moment case 4 of the negative phase at h = 0 and 
we first prove the theorem in the other three cases. 

2. P R E L I M I N A R I E S  

In order to be self-consistent, we briefly indicate the proof of the fol- 
lowing lemma, which is the basis of the proof of the analogous result in the 
random percolation case by Kunz and Souillard, (I) and then we will turn 
to the proof of the three hypotheses of the lemma in our situations. 

kemma 1. Let us suppose that for all m and n 

Pm+,/(m + n) >~ (Pm/m)P,~/n (1) 

P./n  <. exp( -  an (v- l~/v) (2) 

Q. = ~ (Pt/t) >>- exp(-3n  (v-l~/v) (3) 

Then there exists a real, positive g' such that 

P~/n >1 exp( -  a'n (~- 1)/~) (4) 

ProoL The inequalities (2) and (3) imply that there exist an integer A 
and a real 8' such that 

Q. - QA~ /> exp( -  3'n (~- 1~/~) (5) 
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It is easy to see that (5) implies that we can find a positive 3" such that in 
all the interval [n, An[ there exists an integer k satisfying 

P~/k >1 exp(-3"k  ('-1)/v) (6) 

If  we consider now the intervals I, = [A', A*+I[, we denote by k~, for each i, 
one of the integers of the interval I, for which (6) holds. Now for each integer 
n we can make the "division on the basis {k,}"; i,e., if n is in Iz+l, there 
exist integers a,(n) satisfying the following properties: 

n = ~ a,(n)k, + ao(n) 
,=1 (7) 

0 ~< a, < A 2, 0 ~< ao < A 

Then (1) and (6) together imply that 
1 

e--" >t 1---[ [exp(- 3"k}'- 1),,)1~, P_~_~o (8) 
n ~= z a o  

Now if we notice that P=o/ao is bounded from below for ao belonging to 
[1, A[ and that there exists a constant C such that 

l 

~, a,(n)k} v-l~'' <~ Cn (~-l~'v (9) 
i = 1  

we obtain the announced result for all n: 

P,/n >1 exp( -  c~'n ( '-  1)/,) 

Let us now mention the F K G  inequalities, (4) which will be very useful 
in the following. A function f defined on the configurations of a lattice is 
said to be increasing if f (X) <~ f (Y)  when X c Y and decreasing if f (X) >t 
f (Y)  when X c Y. In the same way, we will say that an event is increasing 
(resp. decreasing) if its characteristic function is increasing (resp. decreasing). 
Now let/z be a probability measure over the configurations satisfying, as in 
the Ising model, 

~(x u r)~(x c~ y)/> ~(x)~(r) 

Then the F K G  inequalities tell us that ( f .g )  >1 ( f ) ( g )  whenever f and g 
are both increasing (or decreasing) functions and consequently ( f . g )  <~ 
( f X g )  if one of them is decreasing and the other increasing. 

Now we can begin the proof of the three hypotheses of Lemma 1 in 
our situations. 

3. PROOF OF THE BASIC INEQUALITIES 

Proposition 1. For every ~ and h, and for any possible phase, the 
P .  satisfy 

P,~+ml(n + m) >1 (Pmlm)P./n 
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ProoL We will first prove that for two disjoint clusters CI and (72 

P ( G  u C~) >t P ( G ) P ( G )  

Consider a box A, with given boundary conditions and a cluster C strictly 
included in it, i.e., such that OC n 0A = ~ .  Then 

fix(C) = P.(C, a"--C) = ~. e-u(c~r) 
r =^w~ac Z .  (10) 

Since the interaction is only between nearest neighbors, since Y c A/C u aC, 
we have 

U(C w Y) = U(C) + U(Y)  (l l) 

Then (10) becomes 

e- u(y) 

Y~A\Uu@C ~A 

= e- v(c)<ec~ec>^ 

= e -  ~:'c~e.(C u a C )  (12) 

where #x is the characteristic function of the event " X  is empty", and P(_~) 
denotes the probability for the X to be empty. Now let us consider two 
clusters C1 and C2 with C1 n C2 = z and let C1 u C2 = C. Then because 
the interaction is positive and between nearest neighbors, 

U ( G  u G )  < U(G)  + U(G)  

that is, 

e-  VWPe- v(%) << e- tr(c) (13) 

and applying F K G  inequalities to both decreasing functions #cl~ecl and 
~C2uOc2, we have 

(14) 

So now using (12)-(14), we obtain 

U(C~)/~r - X e- u(c~)/~ _ k PA(CO~(C2) = e- .. c.uoc,/, .. c~u~c,/, 
<~ e- v(c'<~c.ec>^ = P^(C) 

In turn this ensures that after the thermodynamic limit and for any phase 

P(c1)P(c2) <~ _P(C~ cJ C2) (15) 

Now the end of the proof follows as in Ref. 1. We restrict ourselves to 7/2 
for the sake of simplicity. We can write P,,/n as ~lc'l=,/~(C'), where the 
summation runs now only on the different shapes of clusters of size n. 
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To each couple (C1', C2') we can associate the shape C' = C1' + (72' 
by translating (22' in such a way that the lowest among the points of (72' 
farther on the left becomes the nearest neighbor on the right of the highest 
among the points in C1' farther on the right. It is easy to see that, in this 
way, we have defined an injection from {C~'}~ 1 x {C2'}~2 into {C'}~1+~2 , 
where {C'}, denotes the set of different shapes of clusters of size n. Now, 
using (15), we can write 

P,,,+,,d(nl + n2) = , ~, P(C') >1 ,,~= ~, P(C~' + C2') (16) 
Ic l=n l+n2  Icl I=nl Ic2't=n2 

>1 ~ ~ P(C,')P(C2') = (P,,,In,)P,,,ln2 (17) 
IC 1 I=71,1 IC2 [=Tt 2 

This achieves the proof  of our first proposition. 

P r o p o s i t i o n  2. There exists a positive, real a depending on fi and h, 
such that the P~ satisfy 

P~/n <~ e x p ( -  an (v- 1)/,) 

in the following three regions: 

(1) Large magnetic field, h - 2v/3 ) h. 
(2) Low temperature, and positive magnetic field, T < To and h > 0. 
(3) T < To and h = 0 in the positive phase. 

Proof. For each cluster C we will denote OeC as its external boundary, 
that is, the set of points in OC that is "l inked to infinity" by a path in 7/'/C. 
This definition implies: 

(i) OeC is a *connected set; we mark with a star the properties relative 
to the *lattice, that is, the lattice obtained from 7/, by adding the diagonals 
of all the elementary squares. 

(ii) This set ~ C  divides 7/, into two parts: one internal and the other 
external. 

(iii) 0eC is a minimal set satisfying (i) and (ii). 

Let us remark that if we denote by ~ a possible external boundary of 
a cluster C, and if ICI = n, then necessarily I~1 >t rn('-~)% where r is a 
constant depending on the lattice. In all the following, summations over 
will run over possible shapes of an external boundary of a cluster, and AT 
will denote the set of points internal to c~ and nearest neighbor to some 
point of c~. Thus 

P~/n <~ ~ P(~, Ac~) (18) 
~;l~l >>. r n  ( v -  1)Iv 

Now let us suppose that we can find a number q = q(h, fl) such that 

P(~, Acg) <~ q t~ei (19) 
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and q(h, fi) is as small as we want in some regions of the plane (h,/3); a 
Peierls estimate, applied to the *lattice, tells us that the number of such 
contours, [c~ I being fixed, is smaller than K i<el, where Kis a constant depending 
on the *lattice. Then we would have 

P,/n <~ E Kkq~ (20) 
k >>. r n (  v - 1)Iv 

<~ K 'n('-l"v (21) 

for q sufficiently small, and K' goes to zero as q goes to zero. Inequality (21) 
is just the desired upper bound and it remains for us to find the upper bound 
(19) in the various regions mentioned in Proposition 2. 

(a) Upper Bound for Large Magnetic Field 

Clearly Pa(gP, AcN) is smaller than PA(gT), which we can write as 

XcA~g I X e A \ ~  
Y ~  

By virtue of  (13) we have again 

e- u(xug) >/ e- u(x)e- u(g) 

Furthermore, if we notice that e-U(r) is always bounded from below by 
e (h-2~B)lrl, since a site has at most 2v nearest neighbors, we obtain 

e -U(r) >/ i~erl~=i 151! e (h-2~n,lY' (23) 
Y=~ , =o I Y I ! ( I ~ [  - I YI ) !  

Then (22) yields that at the thermodynamic limit 

1 i~i 
P(~)~< ( 1 +  e 7h-2~$) (24) 

which is a suitable upper bound for sufficiently large magnetic field. 

(b) Upper Bound for Low Temperatures 

First, let us restrict ourselves to h = 0 and look at the positively magnet- 
ized phase. We choose as usual a box A with the following boundary condi- 
tions: every point of  8A is occupied. If  c~ is a contour strictly included in 
the box A, we have to bound the conditional probability PA(AT, ~18A), 
which we can write as 

PA(Ag, cg[ 8A) = PA'(Acg' ~ 8A) (25) 
PA,(OA) 

PA,(oalzx< ~ = c~) PA,( A~, c~) (26) 
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where A' = A w OA. But the Markovian property of the model implies 
that PA,(~AIA~, ~) = PA,(~AI~ ), and now applying F K G  inequalities to 
the functions #~ and r which are respectively decreasing and increasing, 
we have 

Pn,(~A[~) = @~rr0^>A, 
~< 1 (27) 

Thus PA(~, Ac~-[ OA) is now bounded by PA,(~, Aqr which in turn ensures 
that 

PA(~, A~IOA) ~< PA'(~IA~) (28) 

Now the well-known Peierls argument ensures the following bounds: 

PA,(r ~< e -a'~t (29) 

Inequality (29) is conserved after the thermodynamic limit, which ends the 
proof of (19) for h = 0 in.the positively magnetized phase and T < To for 
some To. 

Now, to extend the inequality (29) to the second region, we will observe 
that P(~I Acg) is a decreasing function on h. Since the conditional probability 
is again a probability satisfying the condition for the F K G  inequalities and 
since 

dP(CglA~)/dh = ~, {P(x, @l• - P(xIAW)P(~I~X~) ) 
X~7/v 

(30) 

(31) 

where (f) lAV denotes the average of f with the conditional measure, we have 

dP(~lA~)/dh ~ 0 (32) 

which ends the proof of the second proposition for h > 0 and T < To. 

P r o p o s i t i o n  3. In the regions 1-3, the Q~ decrease at most as 
exp( - a'n (v - 1)/0. 

Let us consider the cubes in gv, centered at the origin. We denote by 
V such a cube and, as previously, by ~, its boundary, by Ay the sites of 9' 
nearest neighbor to some point of ~,, and by 0@) the complement of A~, 
in 9'. 

Now in P,Jn we will keep only the contribution of the clusters whose 
external boundary is a cubic one. These clusters are then composed of the 
points in A~, which have to be occupied and by exactly n - A~, points in 
0(7,) which are both occupied and connected to A~,. I f  we call X~ ~ the charac- 
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teristic function of the event " the  point x in O(y) is connected to A 7 "  , a 
lower bound for P U n  is then given by 

Moreover, we know [see Ref. 1, Eq. (51)] that for any positive function g 
depending only on the configurations inside 0(y) there exists B(h, 1~) for 
any h >/0 such that 

~,g#o,~rA,) >~ ( g ) B  i~ (34) 

Thus (33) becomes 

p./n e,o,,.( E. = . -  (35) 
/ 

3' \x~O(v) / 

This yields for the {2. the lower bound 

Q .  = ~ ,  - ~  > ~ ,  B'or'P X~" >1 n - ky  (36) 
m ~> n y \ x ~ O  (v)  

But now the number of points x in O(y) connected to A7 is certainly larger 
than the number of points x connected to infinity, so we have 

y \ x ~ 0 & )  

where Xx ~ is the characteristic function of the event " x  is connected to 
infinity". 

Now let us give an intuitive idea of the proof. In percolative regions, 
we may think that the Xx ~~ will be sufficiently independent random variables. 
So, if we choose y= such that 0(y~)P| ~ n, then P(~x~o(~,) Xx | >1 n - ATe) 
will be larger than, say, 1/2. But if 0(y~)P| ..~ n, then B I~ is about B ' ~ - ~ ,  
and so this term would yield the desired lower bound in (37). 

We come back now to the proof, following Ref. 1 for the beginning: 
let us choose in g ~ the cube y~ of side l with 

(niP| ~s~ <~ l -  2 < (n/P| ~/v + 1 (38) 

Then 

B"~c'-~)"P\x~0{~,~) ( ~ {Xx~ - (X~~ ~> n - Ay - (l - 2)~P~) (39) Q. /> 

>/ / Z tXx - (X .~)}  t> -zXr (40) 
\x~O(Tn) ! 

Let 

s = { x .  o - 

x~O(Yn) 
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Since this variable is centered, we can apply the Bienayme-Tschebycheff 
inequality, which states that 

P(IS[ > a) <<. (S2 ) /a  2 

Hence 

a~ >/ B'~'~-z"~(1 - (S2)/A?,~ 2) (41) 

Moreover, applying F K G  inequalities for the increasing functions, we have 

(x~~ ~176 - (X==)(Xy =5 >1 0 (42) 

and then 

(S 2) = ~ {(X==Xu ~) - (X=~~ (43) 
x,y~O(yn) 

~< ( l -  2)VX (44) 

where x is defined by 

X = ~ {(Xo~176176 - (Xo~176176 (45) 
ye77v 

And since A v >/ 2v(l -- 2) ~-1, (41) becomes 

Q ~ >  B '~'-l~'v(1 4v2( I X_ 2)v_2) (46) 

This, in the case when v /> 3, ensures the desired lower bound on Q~, if n 
is large enough and x finite, and when v >/ 2 for any n if X is small enough. 
We shall show now that X is arbitrarily small in the three regions described 
in the second proposition. 

Equation (45) can be rewritten as 

X = ~ {((1 - xo~)(1 - x ~ ) )  - (1 - x0~~ - xy~)} (47) y-gE v 

= ~ {P(E0, Ey) - P(Eo)P(Eu)} (48) 
yE77v 

where E~ is the decreasing event whose characteristic function is (1 - X~~ 
i.e., the event " x  is empty or x belongs to a finite cluster". Now if E u occurs, 
let us introduce *C, which is the empty *cluster (that is, the maximal empty 
set--possibly infinite--connected through the bonds of the *lattice) con- 
taining y i fy  is empty or including the external boundary of the finite cluster 
containing y if y is occupied. We denote by E the event " the  empty *cluster 
*C defined above surrounds 0".  Then 

P(Eo, E~) = P(Eo, Ey, E)  + P(Eo, E. ,  E) (49) 

< P(E) + ~'(eo, E~, E) (50) 
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Now we shall prove that P(Eo, Ey, ff~) is smaller than P(Eo)P(Ey). If  we 
consider a configuration such that Ey and E occur, the external boundary 
e*C of the *cluster *C is a connected, occupied set separating 0 and Y (or 
possibly 0 ~ ~*C). Now our construction has the following consequence: 
the event Eo occurs completely independently of the configuration interior 
to ~*C. (This is the reason why we have chosen an empty *cluster in the 
definition of the event E, and not a usual cluster; otherwise its external 
boundary could be a nonconnected set and Eo would then depend on the 
configurations interior to that boundary.) Using this remark and since Eo 
is a decreasing event and " 6 " C  is occupied" an increasing event, so that the 
F K G  inequality ensures that P(Eo[O*C) <~ P(Eo), we can get 

P(EolE~, E) <~ P(Eo) (51) 

Now (51) in turn ensures that 

P(Eo, Ey, if,) <~ P(Eo)P(Ey, ff~) < P(Eo)P(Ey) (52) 

So (50) yields 

P(Eo, E~) - P(Eo)P(Eu) <<. P(E) (53) 

Now let us suppose that the probability to have an infinite empty *cluster 
is zero; then we can get an upper bound for P(E) by a proof parallel to that 
in Proposition 2 but using now the *lattice. 

So we have 
P(E) <~ K "a(~ (54) 

which ensures that P(E) is summable over y and that the sum X goes to zero 
as K" goes to zero. 

Then it remains to prove: 

k e m m a  2. The probability */~. that the origin belongs to an infinite 
empty *cluster is zero in the regions 1-3. 

We know that */~. is obtained by taking the thermodynamic limit of  
*/~A: the probability for the origin to be connected through an empty *clus- 
ter to the boundary of the cubic box A centered at the origin. Clearly this 
probability is smaller than the probability for the origin to belong to an 
empty *cluster larger than d(0, 3A). Applying the same kind of calculus as 
for (54), we obtain 

*PA <- K 'a(~ 

which goes to zero as A goes to infinity. 
This achieves the proof  of  the theorem in the case of the first three 

regions if we choose ho sufficiently large and To sufficiently small in order 
that percolation occurs and Proposition 2 holds in these regions. 
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4. INEQUALITIES IN THE NEGATIVE PHASE 

To extend this result to the fourth region, we use an inequality derived 
in Ref. 3, which states that at zero magnetic field in the negative phase, the 
probability P ,  to have a cluster of exactly n occupied sites is greater than the 
probability _P, to have a cluster of exactly n empty sites. Since by symmetry 
the inequality (4) becomes 

_P,=/n >i e x p ( -  a'n (v - 1~1~) 

then 

P~/n >1 e x p ( -  a'n (~- 1~1,) 

On the other hand, the upper bound is obtained similarly as in Proposition 
2, using the following obvious inequality: 

p(Ac~, ~[--~-~) ~< P(AWIc~) ~ e -~t~l 

which ensures the suitable upper bound and achieves the proof  of the 
theorem. 
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